
### **SECTION A**

### Attempt all questions in this section (46marks)

1. The figure below shows the pressure temperature curves for water



| (a) | State the;                                                           |                                        |
|-----|----------------------------------------------------------------------|----------------------------------------|
|     | (i) equilibrium represented by point                                 | O (01 mark)                            |
|     |                                                                      |                                        |
|     | (ii) significance of point A                                         | (01 mark)                              |
|     |                                                                      |                                        |
| (b) | Comment on the slope of line <b>OB</b>                               | (02 marks)                             |
|     |                                                                      |                                        |
|     |                                                                      |                                        |
| (c) | State what will happen to ice at point <b>X</b> i pressure constant. | f it's gently heated while keeping the |
|     |                                                                      |                                        |

| 2. | <ul><li>(a) Write equation(s) of reaction(s) between water and</li><li>(i) Phosphorus (III) chloride</li></ul>                                                            |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    |                                                                                                                                                                           |
|    |                                                                                                                                                                           |
|    | (ii) Phosphorus (V) chloride                                                                                                                                              |
|    |                                                                                                                                                                           |
|    |                                                                                                                                                                           |
|    | (b) Explain why phosphorus (V) chloride can be formed but not nitrogen (V) chloride.                                                                                      |
|    |                                                                                                                                                                           |
|    |                                                                                                                                                                           |
|    |                                                                                                                                                                           |
|    |                                                                                                                                                                           |
|    |                                                                                                                                                                           |
|    |                                                                                                                                                                           |
|    |                                                                                                                                                                           |
|    |                                                                                                                                                                           |
|    |                                                                                                                                                                           |
|    |                                                                                                                                                                           |
| 3. | Complete the following equations and write the systematic name of the organic product.  (a) (CH <sub>3</sub> CH <sub>2</sub> ) <sub>2</sub> NH NaNO <sub>2</sub> /HCl O°C |
|    | Name of product:                                                                                                                                                          |
|    |                                                                                                                                                                           |
|    | (01 mark)                                                                                                                                                                 |
|    | (b) CH <sub>3</sub> CH <sub>2</sub> CHO NH <sub>2</sub> OH/H <sup>+</sup>                                                                                                 |

|            | Name of product:                                                                                                                                                                                        |                                         |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
|            |                                                                                                                                                                                                         | (01 mark)                               |
|            | (c) $CH_3CHCH_2COO^-Na^+ \xrightarrow{CaO}$ heat                                                                                                                                                        |                                         |
|            | Name of product:                                                                                                                                                                                        |                                         |
|            |                                                                                                                                                                                                         | (01 mark)                               |
|            | $(d) (CH3)2C = CH2 + HC1 \longrightarrow \dots$                                                                                                                                                         |                                         |
|            | Name of product:                                                                                                                                                                                        |                                         |
|            |                                                                                                                                                                                                         | (01 mark)                               |
|            | (e) $n(CH_2 = CCH = CH_2)$ $\longrightarrow$ $CH_3$                                                                                                                                                     |                                         |
|            | Name of product:                                                                                                                                                                                        |                                         |
|            |                                                                                                                                                                                                         |                                         |
|            |                                                                                                                                                                                                         | (01 mark)                               |
| <b>l</b> . | (a) 0.6g of iron (III) chloride in the gaseous state was found to occupy 2 $10^{-4}$ Pa and 327°C. Determine the molar mass of iron (III) chloride in the and comment on your value (Fe = 56 Cl = 35.5) |                                         |
|            |                                                                                                                                                                                                         |                                         |
|            |                                                                                                                                                                                                         |                                         |
|            |                                                                                                                                                                                                         |                                         |
|            |                                                                                                                                                                                                         | (02 marks)                              |
|            | (b) Draw the structural formula of iron (III) chloride in the gaseous phase                                                                                                                             | ` ′                                     |
|            |                                                                                                                                                                                                         |                                         |
|            |                                                                                                                                                                                                         | • • • • • • • • • • • • • • • • • • • • |
|            |                                                                                                                                                                                                         |                                         |
|            |                                                                                                                                                                                                         | (01 mark)                               |

|            | (c) Write equation of reaction which takes place when iron (III) chloride is added to water.                                     |  |  |
|------------|----------------------------------------------------------------------------------------------------------------------------------|--|--|
|            |                                                                                                                                  |  |  |
|            | (01 mark)                                                                                                                        |  |  |
| <i>5</i> . |                                                                                                                                  |  |  |
|            |                                                                                                                                  |  |  |
|            |                                                                                                                                  |  |  |
|            |                                                                                                                                  |  |  |
|            |                                                                                                                                  |  |  |
|            |                                                                                                                                  |  |  |
|            |                                                                                                                                  |  |  |
|            |                                                                                                                                  |  |  |
|            |                                                                                                                                  |  |  |
|            | (5 ½ marks)                                                                                                                      |  |  |
| 6.         | (a) A synthetic rubber $\mathbf{Q}$ , was made from unknown number of monomers with the structural formula $H_2C = C - C = CH_2$ |  |  |
|            | (i) State the condition(s) for the reaction (01 mark)                                                                            |  |  |
|            |                                                                                                                                  |  |  |
|            | (ii) Write the equation for the reaction leading to the formation of $\mathbf{Q}$                                                |  |  |

| •••••                 |                                                                                    |                                                           |                                                                                      |
|-----------------------|------------------------------------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------------------------------|
|                       |                                                                                    |                                                           | (01 mark)                                                                            |
|                       |                                                                                    |                                                           |                                                                                      |
| (b) Name the type of  | reaction in a (i)                                                                  |                                                           |                                                                                      |
|                       |                                                                                    |                                                           | ( ½ mark)                                                                            |
|                       | aining <b>5g</b> of <b>Q</b> in <b>200cm</b> ure of <b>34KPa</b> at <b>17°C.</b> I |                                                           | thane is found to have mber of monomers in <b>Q</b> .                                |
| •••••                 |                                                                                    |                                                           |                                                                                      |
| •••••                 |                                                                                    |                                                           |                                                                                      |
| •••••                 |                                                                                    | •••••                                                     |                                                                                      |
| •••••                 |                                                                                    | •••••                                                     |                                                                                      |
|                       |                                                                                    |                                                           | (2 ½ marks)                                                                          |
| (a) Define oxygen rea | acts with nitrogen accord                                                          | ding to the follow                                        | ring equation                                                                        |
| $2NO_{(g)} + O$       | $O_{2(g)} \longrightarrow 2NO_{2(g)}$                                              | _                                                         |                                                                                      |
| The following data w  | as obtained for the above                                                          | e reaction                                                |                                                                                      |
| Experiment number     | [0 <sub>2</sub> ] x 10 <sup>-2</sup> moldm <sup>-3</sup>                           | [NO <sub>2</sub> ] x 10 <sup>-2</sup> moldm <sup>-3</sup> | Rate of disappearance of [NO] x 10 <sup>-4</sup> moldm <sup>-3</sup> S <sup>-1</sup> |
| 1                     | 1.0                                                                                | 1.0                                                       | 0.7                                                                                  |
| 2                     | 1.0                                                                                | 2.0                                                       | 2.8                                                                                  |

| Experiment number | $[0_2] \times 10^{-2} \text{ moldm}^{-3}$ | $[NO_2] \times 10^{-2}$ | Rate of disappearance of                                    |
|-------------------|-------------------------------------------|-------------------------|-------------------------------------------------------------|
|                   |                                           | moldm <sup>-3</sup>     | [NO] x 10 <sup>-4</sup> moldm <sup>-3</sup> S <sup>-1</sup> |
| 1                 | 1.0                                       | 1.0                     | 0.7                                                         |
| 2                 | 1.0                                       | 2.0                     | 2.8                                                         |
| 3                 | 1.0                                       | 3.0                     | 6.3                                                         |
| 4                 | 2.0                                       | 2.0                     | 5.6                                                         |
| 5                 | 3.0                                       | 3.0                     | 18.9                                                        |

7.

| (a) Deduce the order of reaction with respect to |           |
|--------------------------------------------------|-----------|
| (i) $O_2$                                        | (1 mark)  |
|                                                  |           |
|                                                  |           |
| (ii) NO                                          | (01 mark) |

|    | (b) (i) Write the rate equation for the reaction                                                                                  |                                |
|----|-----------------------------------------------------------------------------------------------------------------------------------|--------------------------------|
|    |                                                                                                                                   | (01 mark)                      |
|    |                                                                                                                                   |                                |
|    |                                                                                                                                   |                                |
|    | (ii) Calculate the rate constant K and state its units                                                                            | (01 mark)                      |
|    |                                                                                                                                   | (01 mark)                      |
|    |                                                                                                                                   |                                |
|    |                                                                                                                                   |                                |
|    |                                                                                                                                   |                                |
|    | (c) When the rate of disappearance of <b>NO</b> is $2.8 \times 10^{-4}$ moldm $^{-3}$ s <sup>-1</sup> of disappearance of oxygen. | , determine the rate (01 mark) |
|    |                                                                                                                                   | · · ·                          |
|    |                                                                                                                                   |                                |
|    |                                                                                                                                   |                                |
| 8. | 3. Complete the following equations and in each case outline the Mechan reaction                                                  | nism for the                   |
|    | (a) $(CH_3)_2C = O$ Ba $(OH)_2$                                                                                                   |                                |
|    |                                                                                                                                   | •••••                          |
|    |                                                                                                                                   | •••••                          |
|    |                                                                                                                                   |                                |
|    |                                                                                                                                   |                                |
|    |                                                                                                                                   |                                |

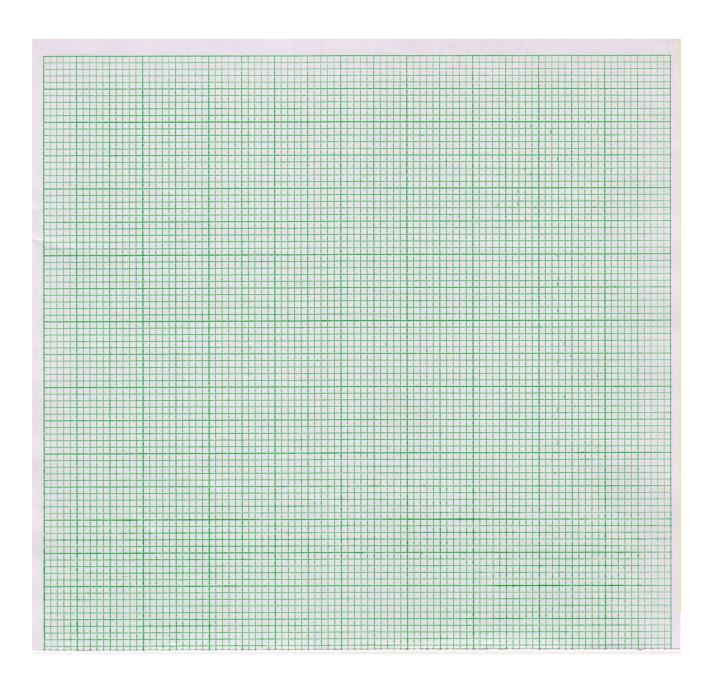
|                                                                                               | (03 marks)               |
|-----------------------------------------------------------------------------------------------|--------------------------|
|                                                                                               |                          |
|                                                                                               |                          |
|                                                                                               |                          |
| H                                                                                             |                          |
| $CH_3C = CH_2$ $Br_2/CH_3Cl$ $\Rightarrow$                                                    |                          |
|                                                                                               |                          |
|                                                                                               |                          |
|                                                                                               |                          |
|                                                                                               |                          |
|                                                                                               |                          |
|                                                                                               | (02 marks)               |
| Give two properties in which boron resembles silicon                                          | ,                        |
|                                                                                               |                          |
|                                                                                               |                          |
|                                                                                               |                          |
|                                                                                               |                          |
|                                                                                               | (02 marks)               |
| Write equation(s) of reactions which take place when the on are separately treated with water | chlorides of silicon and |
| if the Separatery treated with water                                                          | (03 marks)               |

# **SECTION B: (54 MARKS)**

### Attempt only six questions in this section

| coi<br>wi | the reagent that can be used to distinguish between the following pairs of organic ounds and in each case state what is observed when the reagent is separately treated each member of a pair COOCH <sub>2</sub> CH <sub>3</sub> and CH <sub>3</sub> COOCH <sub>2</sub> CH <sub>3</sub> eagent: |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|           | oservation                                                                                                                                                                                                                                                                                      |
|           |                                                                                                                                                                                                                                                                                                 |
| (b)       | CHCH <sub>3</sub> and CH <sub>2</sub> CH <sub>2</sub> OH  cagent:                                                                                                                                                                                                                               |
|           | oservation                                                                                                                                                                                                                                                                                      |
|           |                                                                                                                                                                                                                                                                                                 |
|           | (03 marks)                                                                                                                                                                                                                                                                                      |
| (c)       | CH <sub>2</sub> Br and Cl                                                                                                                                                                                                                                                                       |
|           | oservation                                                                                                                                                                                                                                                                                      |

|                                                                                                    | (03 marks)                                                                                          |
|----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| group (IV)                                                                                         | c table but differs from the rest of the members of bon differs from the rest of the group members. |
|                                                                                                    |                                                                                                     |
| (b) Give a reason why carbon differs                                                               | from the rest of the group members                                                                  |
| (c) When water was added to silicon (observation.                                                  | (IV) chloride, white fumes were formed. Explain the                                                 |
|                                                                                                    |                                                                                                     |
| <ul><li>(d) Write equation for the reaction wh</li><li>(i) Trilead tetra oxide is reacte</li></ul> | ed with nitric acid.                                                                                |
|                                                                                                    | with concentrated hydrochloric acid.                                                                |
|                                                                                                    |                                                                                                     |
| 12. (a) Define an acid- base indictor                                                              |                                                                                                     |


| <br>•••••      |
|----------------|
| <br>           |
| <br>(01 morts) |

(b) Sodium hydroxide was added in portions to  $25cm^3$  of 0.1M ethanoic acid and  $P^H$  was measured at intervals giving the following results.

| Volume of               | 0.0 | 4.0 | 8.0 | 12.0 | 16.0 | 18.0 | 20.0 | 22.0 | 22.5 | 23.0 | 23.5 | 24.0 | 28.0 |
|-------------------------|-----|-----|-----|------|------|------|------|------|------|------|------|------|------|
| NaOH (cm <sup>3</sup> ) |     |     |     |      |      |      |      |      |      |      |      |      |      |
| PH                      | 2.8 | 3.5 | 4.0 | 4.5  | 5.1  | 5.5  | 5.8  | 7.0  | 9.0  | 10.5 | 11.0 | 11.4 | 12.3 |

Plot the P<sup>H</sup> curve for the reaction

(03 marks)



| (c)Use the graph in (b) above to determine |            |
|--------------------------------------------|------------|
| (i) the P <sup>H</sup> at end point        |            |
|                                            |            |
|                                            |            |
| ••••••                                     | •••••      |
|                                            |            |
| (ii) Molarity of sodium hydroxide solution | (03 marks) |

| 3 | <ul> <li>4.1g of a bromo alkane Y, was boiled with excess sodium hydroxide solution and the resultant mixture acidified with dilute nitric acid and diluted to 250cm³ of solution.</li> <li>25.0cm³ of the resultant solution required 16.64cm³ of 0.2M silver nitrate solution for complete reaction</li> <li>(a) (i) Determine the molecular formula of Y</li> </ul> |
|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   |                                                                                                                                                                                                                                                                                                                                                                        |
|   |                                                                                                                                                                                                                                                                                                                                                                        |
|   |                                                                                                                                                                                                                                                                                                                                                                        |
|   |                                                                                                                                                                                                                                                                                                                                                                        |
|   |                                                                                                                                                                                                                                                                                                                                                                        |
|   |                                                                                                                                                                                                                                                                                                                                                                        |
|   |                                                                                                                                                                                                                                                                                                                                                                        |
|   |                                                                                                                                                                                                                                                                                                                                                                        |
|   |                                                                                                                                                                                                                                                                                                                                                                        |
|   | (iii) Write the structural formulae and <b>IUPAC</b> names of all the possible isomers of <b>Y</b>                                                                                                                                                                                                                                                                     |
|   |                                                                                                                                                                                                                                                                                                                                                                        |
|   |                                                                                                                                                                                                                                                                                                                                                                        |
|   |                                                                                                                                                                                                                                                                                                                                                                        |

| (b) | Using equations only, stating reagents and conditions, show how converted to $(CH_3)_2C = NN \longrightarrow NO_2$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ $\downarrow$ | w Y can be                 |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
|     |                                                                                                                                                                                                                                         |                            |
|     |                                                                                                                                                                                                                                         |                            |
|     |                                                                                                                                                                                                                                         |                            |
|     |                                                                                                                                                                                                                                         |                            |
|     |                                                                                                                                                                                                                                         |                            |
|     |                                                                                                                                                                                                                                         |                            |
|     |                                                                                                                                                                                                                                         |                            |
|     | flask                                                                                                                                                                                                                                   |                            |
| (b) | State the effects of the following changes on the position of eq                                                                                                                                                                        | (01 mark)<br>uilibrium and |
|     | equilibrium constant;                                                                                                                                                                                                                   |                            |
|     | (i) Adding more ammonia form outside the reaction flask                                                                                                                                                                                 | (02marks)                  |
|     |                                                                                                                                                                                                                                         |                            |
|     |                                                                                                                                                                                                                                         |                            |
|     |                                                                                                                                                                                                                                         |                            |
|     | (ii) Adding Helium gas at constant volume                                                                                                                                                                                               | (02 marks)                 |
|     |                                                                                                                                                                                                                                         |                            |
|     |                                                                                                                                                                                                                                         |                            |
|     |                                                                                                                                                                                                                                         |                            |

| (c) Dichloride sulphur dioxide decomposes according to the following equation;                                                                                                                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $SO_2Cl_{2(g)} \longrightarrow SO_{2(g)} + Cl_{2(g)}$                                                                                                                                            |
| At a pressure of <b>1 atmosphere</b> and a temperature of <b>100°C</b> , a sample of dichloride sulphur dioxide in the gas phase was found to contain 34% of chlorine. Calculate the value of Kp |
|                                                                                                                                                                                                  |
|                                                                                                                                                                                                  |
|                                                                                                                                                                                                  |
|                                                                                                                                                                                                  |
|                                                                                                                                                                                                  |
|                                                                                                                                                                                                  |
|                                                                                                                                                                                                  |
| 15. Write equations to show how the following compounds can be synthesized                                                                                                                       |
| (a) OH from $CH(CH_3)_2$                                                                                                                                                                         |
|                                                                                                                                                                                                  |
|                                                                                                                                                                                                  |
|                                                                                                                                                                                                  |
|                                                                                                                                                                                                  |
|                                                                                                                                                                                                  |
|                                                                                                                                                                                                  |
| (b) $CHCH_3$ from $Br$                                                                                                                                                                           |

|         | Q                                                                                        |
|---------|------------------------------------------------------------------------------------------|
| (c)     | O<br>CH <sub>3</sub> CCH <sub>3</sub> from CH <sub>3</sub> CH <sub>2</sub> OH            |
|         |                                                                                          |
|         |                                                                                          |
|         |                                                                                          |
|         |                                                                                          |
|         |                                                                                          |
|         |                                                                                          |
|         |                                                                                          |
|         |                                                                                          |
| 6. (a)  | A compound J contained 19.1% nitrogen 43.6% oxygen and the rest being                    |
| mar     | nganese.                                                                                 |
| (i)     | Calculate the empirical formula of <b>J</b>                                              |
|         |                                                                                          |
|         |                                                                                          |
|         |                                                                                          |
| • • • • |                                                                                          |
| • • • • |                                                                                          |
| • • • • |                                                                                          |
| • • • • |                                                                                          |
| • • • • |                                                                                          |
| • • • • |                                                                                          |
| • • • • |                                                                                          |
| (ii).   | 10g of J in 1000g of water lowered the freezing point of water by 0.127°C. Calculate     |
|         | Tog of the roots of water to werea the needing point of water by the calculate           |
| the     | molecular formula of J (Kf water is $1.86^{\circ}$ Cmol <sup>-1</sup> Kg <sup>-1</sup> ) |

| • • • |                                                                                                                      |
|-------|----------------------------------------------------------------------------------------------------------------------|
|       | When $J$ was strongly heated brown fumes were given off. $J$ dissolved in water to $m$ a pink solution. Identify $J$ |
| •••   |                                                                                                                      |
| c)    | State what is observed and write equations for the reactions which take place when;                                  |
|       | (i) Concentrated nitric acid is added and lead (IV) oxide was added to ${\bf J}$ and the mixture boiled              |
|       | Observation                                                                                                          |
|       |                                                                                                                      |
|       |                                                                                                                      |
|       | Equation                                                                                                             |
|       |                                                                                                                      |
|       | (ii) Potassium carbonate solution was added                                                                          |
|       | Observation                                                                                                          |
|       |                                                                                                                      |
|       |                                                                                                                      |
|       |                                                                                                                      |
|       | Equation                                                                                                             |

| • • • •   |
|-----------|
| •••       |
|           |
|           |
| . <b></b> |
| . <b></b> |
|           |
|           |
| • • • •   |
| tic       |
|           |
|           |
|           |
| •••       |
| •••       |
| •••       |
| ••        |
|           |

## THE PERIODIC TABLE

| 1                 | 2                 |                   |                   |                         |                  |                  |                   |                   |                   |                   |                   | 3                | 4                 | 5                 | 6                 | 7                  | 8                 |
|-------------------|-------------------|-------------------|-------------------|-------------------------|------------------|------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------|-------------------|-------------------|-------------------|--------------------|-------------------|
| 1<br>H<br>1.0     |                   |                   |                   |                         |                  |                  |                   |                   |                   |                   |                   |                  |                   |                   |                   | 1<br>H<br>1.0      | 2<br>He<br>4.0    |
| 3<br>Li<br>6.9    | 4<br>Be<br>9.0    |                   |                   |                         |                  |                  |                   |                   |                   |                   |                   | 5<br>B<br>19.8   | 6<br>C<br>12.0    | 7<br>N<br>14.0    | 8<br>O<br>16.0    | 9<br>F<br>19.0     | 10<br>Ne<br>20,2  |
| 11<br>Na<br>23.0  | 12<br>Mg<br>24.3  |                   |                   |                         |                  |                  |                   |                   |                   |                   |                   | 13<br>Al<br>27.0 | 14<br>Si<br>28.1  | 15<br>P<br>31.0   | 16<br>S<br>32.1   | 17<br>Cl<br>35.4   | 18<br>Ar<br>40.0  |
| 19<br>K<br>39.1   | 20<br>Ca<br>40.1  | 21<br>Sc<br>45.0  | 22<br>Ti<br>47.9  | 23<br>V<br><b>5</b> 0.9 | 24<br>Cr<br>52.0 | 25<br>Mn<br>54.9 | 26<br>Fe<br>55.8  | 27<br>Co<br>58.9  | 28<br>Ni<br>58.7  | 29<br>Ca<br>63.5  | 30<br>Zn<br>65.7  | 31<br>Ga<br>69.7 | 32<br>Ge<br>72.6  | 33<br>As<br>74.9  | 34<br>Se<br>79.0  | 35<br>Br<br>79.9   | 36<br>Kr<br>83.8  |
| 37<br>Rb<br>85.5  | 38<br>Sr<br>87.6  | 39<br>Y<br>88.9   | 40<br>Zr<br>91.2  | 41<br>Nb<br>92.9        | 42<br>Mo<br>95.9 | 43<br>Tc<br>98.9 | 44<br>Ru<br>101   | 45<br>Rh<br>103   | 46<br>Pd<br>106   | 47<br>Ag<br>108   | 48<br>Cd<br>112   | 49<br>In<br>115  | 50<br>Sn<br>119   | 51<br>Sb<br>122   | 52<br>Te<br>128   | 53<br>I<br>127     | 54<br>Xe<br>131   |
| 55<br>Cs<br>133   | 56<br>Ba<br>137   | .57<br>La<br>139  | 72<br>Hf<br>178   | 73<br>Ta<br>181         | 74<br>W<br>184   | 75<br>Re<br>186  | 76<br>Os<br>190   | 77<br>Ir<br>192   | 78<br>Pt<br>195   | 79<br>Au<br>197   | 80<br>Hg<br>201   | 81<br>TI<br>204  | 82<br>Pb<br>207   | 83<br>Bi<br>209   | 84<br>Po<br>(209) | 85<br>At<br>(210)  | 86<br>Rn<br>(222) |
| 87<br>Fr<br>(223) | 88<br>Ra<br>(226) | 89<br>Ac<br>(227) |                   |                         |                  |                  |                   |                   | ,                 |                   |                   |                  |                   |                   |                   | ***********        |                   |
|                   |                   |                   | 57<br>La<br>139   | 53<br>Ce<br>140         | 59<br>Pr<br>141  | 60<br>Nd<br>144  | 61<br>Pm<br>(145) | 62<br>Sm<br>152   | 63<br>Sm<br>150   | 64<br>Eu<br>152   | 65<br>To<br>159   | 66<br>Dy<br>162  | 67<br>ho<br>165   | 68<br>Er<br>167   | 69<br>Tm<br>169   | 70<br>Yb<br>173    | 71<br>Lu<br>175   |
|                   |                   |                   | 89<br>Ac<br>(227) | 90<br>Th<br>232         | 91<br>Pa<br>231  | 92<br>U<br>238   | 93<br>Np<br>237   | 94<br>Pu<br>(244) | 95<br>Am<br>(243) | 96<br>Cm<br>(247) | 97<br>Bk<br>(247) | 98<br>Cf<br>251  | 99<br>Es<br>(254) | 100<br>Fm<br>(257 | Mv                | 102<br>No<br>(254) | 103<br>Lw         |

1. Indicates atomic number.

2.  $\frac{H}{1.0}$  Indicates relative atomic mass.